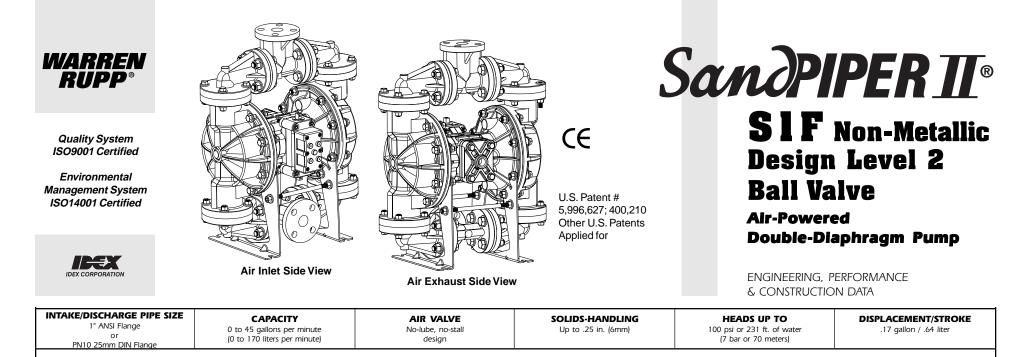

# SERVICE & OPERATING MANUAL SandPIPER II® Model SIF Non-Metallic Design Level 2

### **Table of Contents**


| Engineering Data and Temperature Limitations                      | 1   |
|-------------------------------------------------------------------|-----|
| Explanation of Pump Nomenclature                                  | 2   |
| Performance Curve, Model S1F Non-Metallic Design Level 2          | . 3 |
| Dimensions: S1F Non-Metallic                                      | 4   |
| Metric Dimensions: S1F Non-Metallic                               | 5   |
| Dimensions: S1F Non-Metallic with Spill Prevention                | 6   |
| Metric Dimensions: S1F Non-Metallic with Spill Prevention         | 7   |
| Principle of Pump Operation                                       | 8   |
| Installation and Start-up                                         | . 8 |
| Air Supply                                                        | . 8 |
| Air Valve Lubrication                                             | . 8 |
| Air Line Moisture                                                 | . 8 |
| Air Inlet and Priming                                             | . 8 |
| Between Uses                                                      | . 8 |
| Installation Guide                                                | . 9 |
| Important Safety Information                                      | 10  |
| Material Codes                                                    | 10  |
| Troubleshooting                                                   | 11  |
| Warranty                                                          | 11  |
| Composite Repair Parts Drawing                                    | 12  |
| Overlay Option Drawing                                            | 12  |
| Composite Repair Parts List                                       | 13  |
| RuppGUARD™ Spill Prevention Option for Virgin PTFE Equipped Pumps | 14  |
| RuppGUARD™ Spill Prevention Repair Parts List                     | 14  |
| RuppGUARD™ Spill Prevention Concept                               | 15  |
| RuppGUARD™ Spill Prevention Option Diaphragm Servicing            | 15  |
| Filling RuppGUARD™ Chambers with Liquid                           | 15  |
| RuppGUARD™ Spill Prevention Option for TPE Equipped Pumps         | 16  |
| RuppGUARD™ Spill Prevention Repair Parts List                     | 16  |
| RuppGUARD™ Spill Prevention Concept with TPE Diaphragms           | 17  |
| RuppGUARD™ Spill Prevention Option with TPE Diaphragm             | 17  |
|                                                                   |     |



U.S. Patent # 400,210 5,996,627

| Air Distribution Valve Assembly Drawing                              |    |
|----------------------------------------------------------------------|----|
| Main Air Valve Assembly Parts List                                   |    |
| Air Distribution Valve Servicing                                     | 19 |
| Air Distribution Valve with Stroke Indicator Options                 | 20 |
| Air Distribution Valve with Stroke Indicator Parts List              | 20 |
| Air Distribution Valve with Stroke Indicator Servicing               | 21 |
| Pilot Valve Assembly Drawing                                         | 22 |
| Pilot Valve Assembly Parts List                                      | 22 |
| Pilot Valve Servicing                                                | 23 |
| Diaphragm Service Drawing, Non-Overlay                               | 24 |
| Diaphragm Service Drawing, with Overlay                              | 24 |
| Diaphragm Servicing                                                  | 25 |
| Overlay Diaphragm Service                                            | 25 |
| Pumping Hazardous Liquids                                            | 26 |
| Converting the pump for piping the exhaust air                       | 26 |
| Exhaust Conversion Drawing                                           | 26 |
| Converted Exhaust Illustration                                       | 26 |
| Modular Check Valve Servicing                                        | 27 |
| Modular Check Valve Drawing                                          | 27 |
| Dual Port Option Drawing                                             | 28 |
| Dual Porting Options                                                 | 29 |
| Dual porting of both suction and discharge ends of the pump          | 29 |
| Single porting of the suction and dual porting of the pump discharge | 29 |
| Dual porting of the suction and single porting of the pump discharge | 29 |
| Leak Detection Options Drawing                                       | 30 |
| RuppTech® Electronic Leak Detector Installation                      | 30 |
| Mechanical Leak Detector Installation                                | 30 |
| RuppTech® Pulse Output Kit Drawing                                   | 31 |
| RuppTech® Pulse Output Kit Option                                    | 31 |
| Exhaust Port or Auxiliary Muffler Setup                              | 31 |
| Integral Muffler Setup                                               |    |
|                                                                      |    |

WARREN RUPP®, INC. • A Unit of IDEX Corporation • PO. Box 1568, Mansfield, Ohio 44901-1568 USA • Telephone (419) 524-8388 • Fax (419) 522-7867 • www.warrenrupp.com



#### **CAUTION!** Operating temperature limitations are as follows:

| Materials                                                                                                                                                                                                                                                                                                                | Maximum*       | Operating Temperatures<br>Minimum* | Optimum**                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------|--------------------------------|
| Santoprene <sup>®</sup> Injection molded thermoplastic elastomer with no fabric layer. Long mechanical flex life. Excellent abrasion resistance.                                                                                                                                                                         | 212°F<br>100°C | -10°F<br>-23°C                     | 50° to 212°F<br>10°C to 100°C  |
| <b>PTFE</b> Chemically inert, virtually impervious. Very few chemicals are known to react chemically with Teflon: molten alkali metals, turbulent liquid or gaseous fluorine and a few fluoro-chemicals such as chlorine trifluoride or oxygen difluoride which readily liberate free fluorine at elevated temperatures. | 212°F<br>100°C | -35°F<br>-37°C                     | 50°F to 212°F<br>10°C to 100°C |
| PVDF                                                                                                                                                                                                                                                                                                                     | 200°F<br>-93°C | -10°F<br>-13°C                     |                                |
| Polypropylene                                                                                                                                                                                                                                                                                                            | 150°F<br>65°C  | -40°F<br>5°C                       |                                |
| Nylon                                                                                                                                                                                                                                                                                                                    | 150°F<br>65°C  | -40°F<br>5°C                       |                                |

For specific applications, always consult "Chemical Resistance Chart" Technical Bulletin

\*Definite reduction in service life. \*\*Minimal reduction in service life at ends of range.

SandPIPER II® pumps are designed to be powered only by compressed air.

### **Explanation of Pump Nomenclature**

### S1F Non-Metallic · Design Level 2· Ball Valve

| MODEL           | Pump<br>Brand | Pump<br>Size | Check<br>Valve<br>Type | Design<br>Level | Wetted<br>Material | Diaphragm/<br>Check Valve<br>Materials | Check<br>Valve<br>Seat | Non-Wetted<br>Material<br>Options | Porting<br>Options | Pump<br>Style | Pump<br>Options | Kit<br>Options | Shipping<br>Weight<br>Ibs. (kg) |
|-----------------|---------------|--------------|------------------------|-----------------|--------------------|----------------------------------------|------------------------|-----------------------------------|--------------------|---------------|-----------------|----------------|---------------------------------|
| S1FB2P1PAAS000. | S             | 1F           | В                      | 2               | Р                  | 1                                      | Р                      | А                                 | А                  | S             | 0               | 00.            | 53 (24)                         |
| S1FB2P2PAAS000. | S             | 1F           | В                      | 2               | Р                  | 2                                      | Р                      | А                                 | Α                  | S             | 0               | 00.            | 53 (24)                         |
| S1FB2K1KAAS000. | S             | 1F           | В                      | 2               | К                  | 1                                      | K                      | А                                 | Α                  | S             | 0               | 00.            | 65 (29)                         |
| S1FB2K2KAAS000. | S             | 1F           | В                      | 2               | К                  | 2                                      | K                      | А                                 | Α                  | S             | 0               | 00.            | 65 (29)                         |
| S1FB2P3PAAV000. | S             | 1F           | В                      | 2               | Р                  | 3                                      | Р                      | А                                 | Α                  | V             | 0               | 00.            | 58 (26)                         |
| S1FB2K3KAAV000. | S             | 1F           | В                      | 2               | K                  | 3                                      | K                      | A                                 | Α                  | V             | 0               | 00.            | 77 (35)                         |

#### Pump Brand

S= SandPIPER II®

Pump Size 1F=1" Full Flow

**Check Valve Type** B= Ball

**Design Level** 2= Design Level 2

#### Wetted Material

K= PVDF N=Nylon

P= Polypropylene

#### Diaphragm Check Valve Materials

1= Santoprene/Santoprene 2= PTFE-Santoprene Backup/PTFE 3= PTFE Pumping, PTFE-Santoprene Backup Driver/PTFE

#### Check Valve Seat

K=PVDF N=Nylon P=Polypropylene

#### Non-Wetted Material Options

A= Painted Aluminum J= Painted Aluminum PTFE

- Q= Epoxy Coated Aluminum
- K= PTFE Coated Aluminum
- L= PTFE Coated Aluminum with PTFE Coated Hardware

R= Epoxy Coated Aluminum with PTFE Coated Hardware

#### Porting Options

A= ANSI Flange D=DIN Flange 7= Dual Porting (ANSI) 8= Top Dual Porting (ANSI) 9= Bottom Dual Porting (ANSI)

#### Pump Style

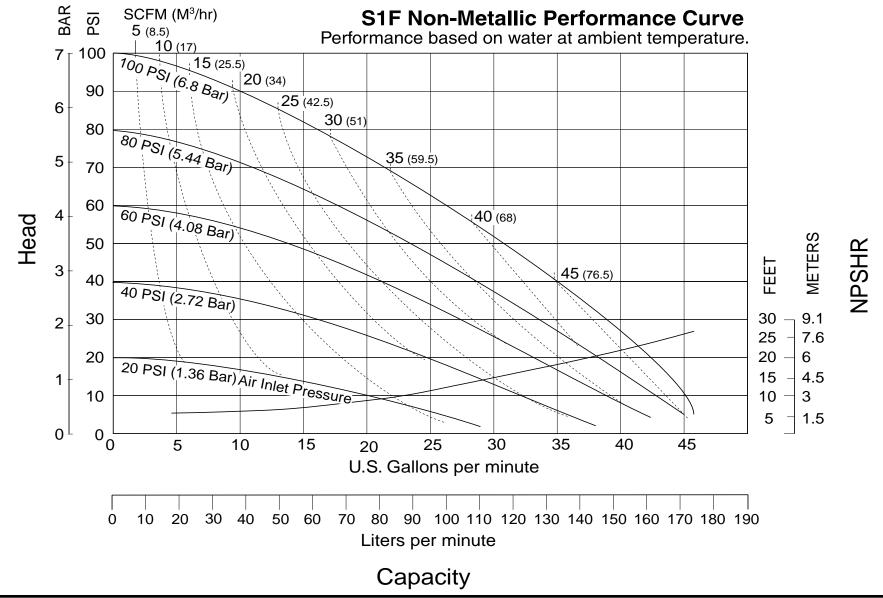
- D=RuppGUARD<sup>™</sup> with Electronic Leak Detection (110V) E=RuppGUARD<sup>™</sup> with
- Electronic Leak Detection (220V) M=RuppGUARD™ with Mechanical

Leak Detection

- S= Standard
- V=RuppGUARD<sup>™</sup> with Visual Leak Detection

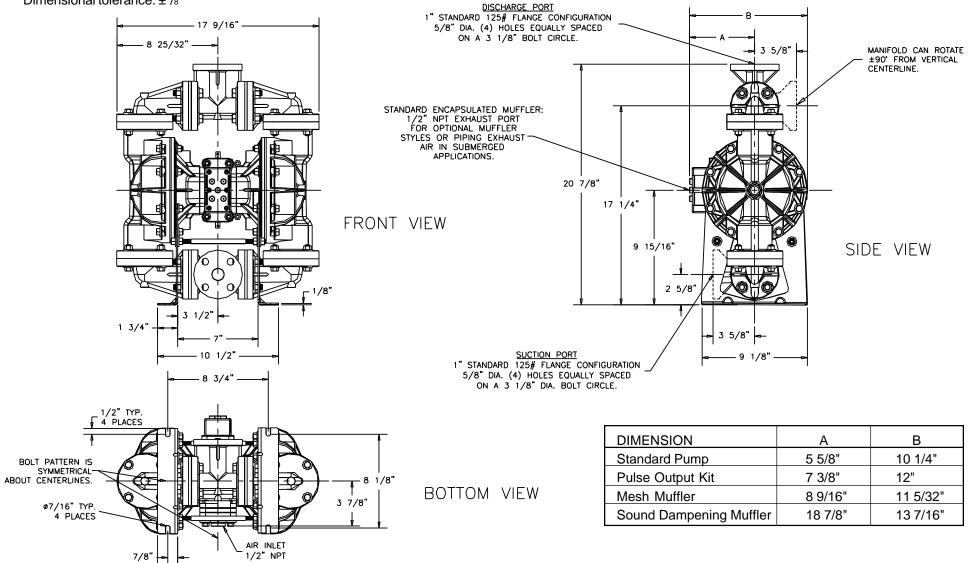
#### **Pump Options**

0= None


- 1= 3M Muffler 2= Mesh Muffler
- 3= High temperature Air
- Valve w/Encapsulated
- Muffler
- 4= High temperature Air Valve w/3M Muffler 5= High temperature AirValvew/Mesh Muffler

#### Kit Options

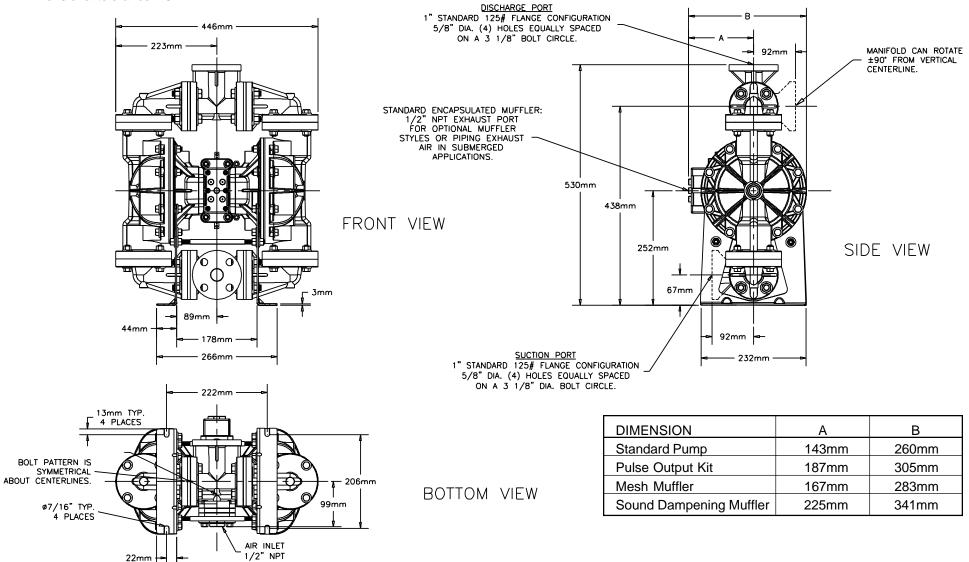
00.=None


- P0.=0-30VDC Pulse Output Kit
- P1.=Intrinsically-Safe 10-30VDC Pulse Output Kit P2.=110/120 or 220/240VAC Pulse Output Kit P3.=Intrinsically-Safe 110/120VAC Pulse Output Kit P4.=Intrinsically-Safe 220/240VAC Pulse Output Kit SP.=Stroke Indicator Pins

## Performance Curve, Model S1F Non-Metallic Design Level 2

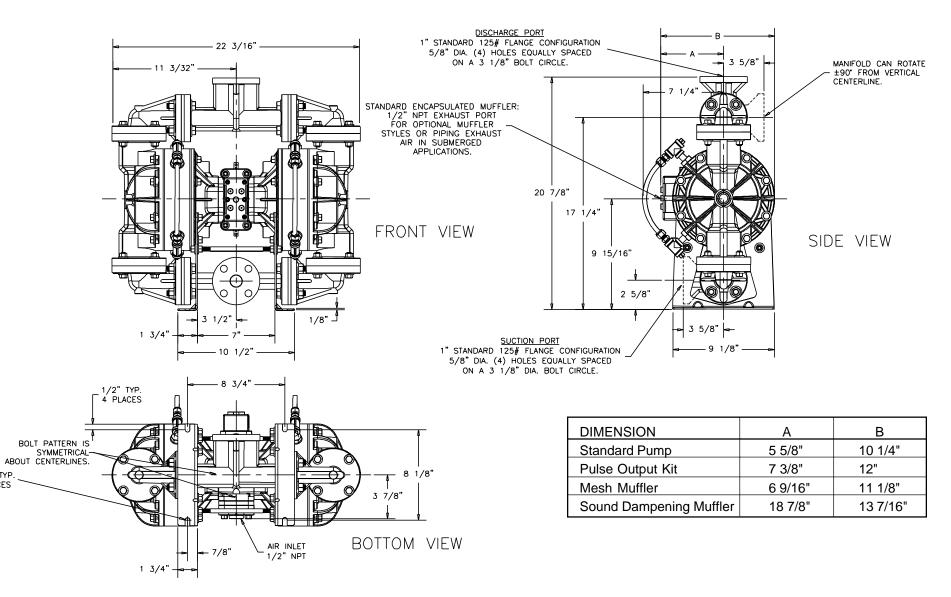


## **Dimensions: S1F Non-Metallic**


Dimensions in Inches Dimensional tolerance: ±<sup>1</sup>/<sub>8</sub>"

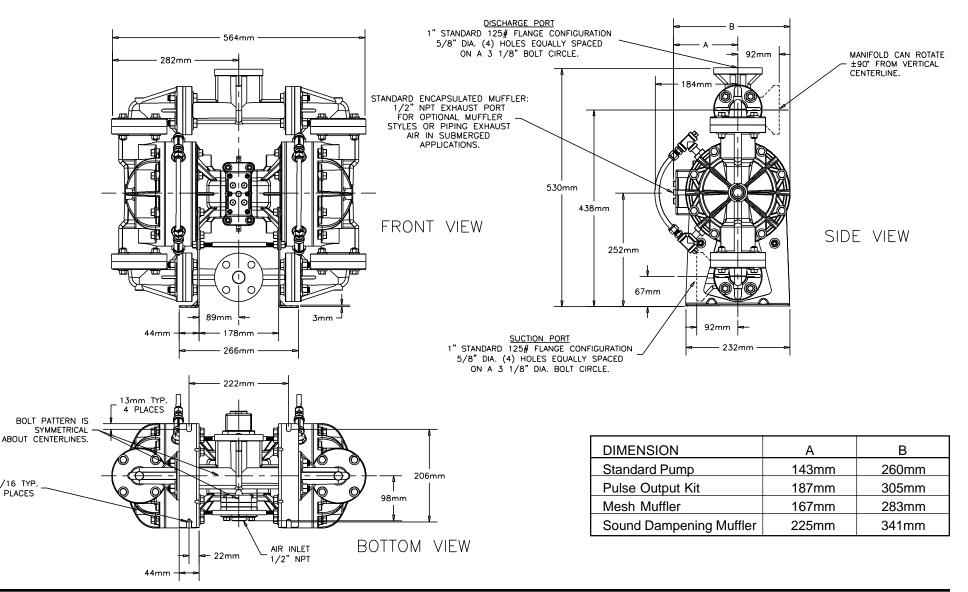


1 3/4


### **Metric Dimensions: S1F Non-Metallic**

Dimensions in Millimeters Dimensional tolerance: ±3mm




44mm

### Dimensions: S1F Non-Metallic with RuppGuard<sup>™</sup> Spill Prevention



Ø7/16 TYP. 4 PLACES

## Metric Dimensions: S1F Non-Metallic with RuppGuard<sup>™</sup> Spill Prevention



Ø7/16 TYP.

4 PLACES

#### PRINCIPLE OF PUMP OPERATION

This ball type check valve pump is powered by compressed air and is a 1:1 ratio design. The inner side of one diaphragm chamber is alternately pressurized while simultaneously exhausting the other inner chamber. This causes the diaphragms, which are connected by a common rod secured by plates to the centers of the diaphragms, to move in a reciprocating action. (As one diaphragm performs the discharge stroke the other diaphragm is pulled to perform the suction stroke in the opposite chamber.) Air pressure is applied over the entire inner surface of the diaphragm while liquid is discharged from the opposite side of the diaphragm. The diaphragm operates in a balanced condition during the discharge stroke which allows the pump to be operated at discharge heads over 200 feet (61 meters) of water.

For maximum diaphragm life, keep the pump as close to the liquid being pumped as possible. Positive suction head in excess of 10 feet of liquid (3.048 meters) may require a back pressure regulating device to maximize diaphragm life.

Alternate pressurizing and exhausting of the diaphragm chamber is performed by an externally mounted, pilot operated, four way spool type air distribution valve. When the spool shifts to one end of the valve body, inlet pressure is applied to one diaphragm chamber and the other diaphragm chamber exhausts. When the spool shifts to the opposite end of the valve body, the pressure to the chambers is reversed. The air distribution valve spool is moved by a internal pilot valve which alternately pressurizes one end of the air distribution valve spool while exhausting the other end. The pilot valve is shifted at each end of the diaphragm stroke when a actuator plunger is contacted by the diaphragm plate. This actuator plunger then pushes the end of the pilot valve spool into position to activate the air distribution valve.

The chambers are connected with manifolds with a suction and discharge check valve for each chamber, maintaining flow in one direction through the pump.

#### **INSTALLATION AND START-UP**

Locate the pump as close to the product being pumped as possible. Keep the suction line length and number of fittings to a minimum. Do not reduce the suction line diameter.

For installations of rigid piping, short sections of flexible hose should be installed between the pump and the piping. The flexible hose reduces vibration and strain to the pumping system. A surge suppressor is recommended to further reduce pulsation in flow.

#### AIR SUPPLY

Air supply pressure cannot exceed 100 psi (7 bar). Connect the pump air inlet to an air supply of sufficient capacity and pressure required for desired performance. When the air supply line is solid piping, use a short length of flexible hose not less than ½" (13mm) in diameter between the pump and the piping to reduce strain to the piping. The weight of the air supply line, regulators and filters must be supported by some means other than the air inlet cap. Failure to provide support for the piping may result in damage to the pump. A pressure regulating valve should be installed to insure air supply pressure does not exceed recommended limits.

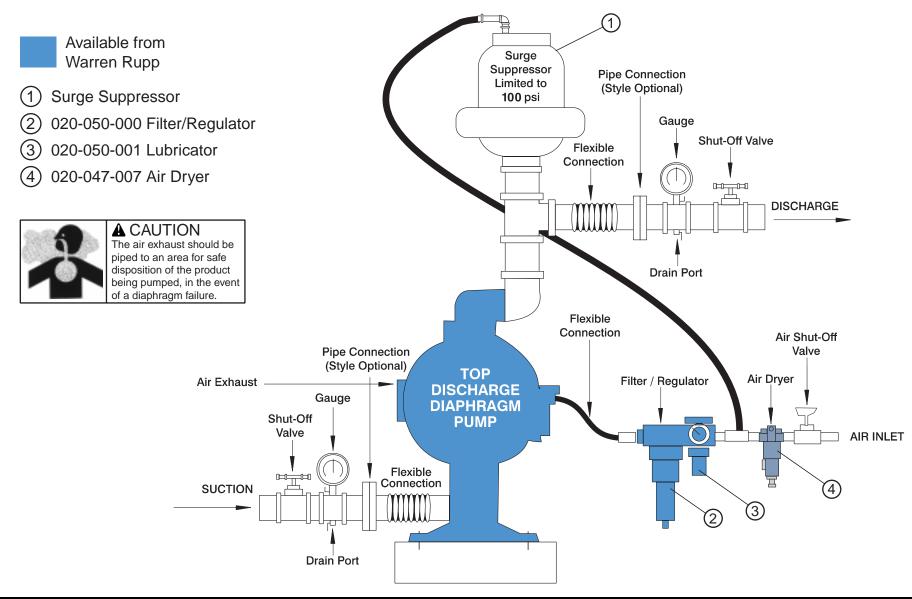
#### **AIR VALVE LUBRICATION**

The air distribution valve and the pilot valve are designed to operate WITHOUT lubrication. This is the preferred mode of operation. There may be instances of personal preference or poor quality air supplies when lubrication of the compressed air supply is required. The pump air system will operate with properly lubricated compressed air supply. Proper lubrication requires the use of an air line lubricator (available from Warren Rupp) set to deliver one drop of SAE 10 non-detergent oil for every 20 SCFM (9.4 liters/sec.) of air the pump consumes at the point of operation. Consult the pump's published Performance Curve to determine this.

#### AIR LINE MOISTURE

Water in the compressed air supply can create problems such as icing or freezing of the exhaust air, causing the pump to cycle erratically or stop operating. Water in the air supply can be reduced by using a point-of-use air dryer to supplement the user's air drying equipment. This device removes water from the compressed air supply and alleviates the icing or freezing problems.

#### AIR INLET AND PRIMING


To start the pump, open the air valve approximately ½ to ¾ turn. After the pump primes, the air valve can be opened to increase air flow as desired. If opening the valve increases cycling rate, but does not increase the rate of flow, cavitation has occurred. The valve should be closed slightly to obtain the most efficient air flow to pump flow ratio.

#### **BETWEEN USES**

When the pump is used for materials that tend to settle out or solidify when not in motion, the pump should be flushed after each use to prevent damage. (Product remaining in the pump between uses could dry out or settle out. This could cause problems with the diaphragms and check valves at restart.) In freezing temperatures the pump must be completely drained between uses in all cases.



### **INSTALLATION GUIDE** Top Discharge Ball Valve Unit



### IMPORTANT SAFETY **INFORMATION**



### 

Read these safety warnings and instructions in this manual completely, before installation and start-up of the pump. It is the

responsibility of the purchaser to retain this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.



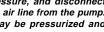
### **A** CAUTION

Before pump operation, inspect all gasketed fasteners for looseness caused by gasket creep. Re-torque loose fasteners

to prevent leakage. Follow recommended torques stated in this manual.



### 


Before maintenance or repair, shut off the compressed air line, bleed the pressure, and disconnect the air line from the pump.

The discharge line may be pressurized and must be bled of its pressure.

## 

In the event of diaphragm rupture, pumped material may enter the air end of the pump, and be discharged into the atmosphere. If

pumping a product which is hazardous or toxic, the air exhaust must be piped to an appropriate area for safe disposition.



### 

012

015

020

113

114

115

120

123

152

162

165

166

305

309

330

333

353

This pump is pressurized internally with air pressure during operation. Always make certain that all bolting is in good condition and that

all of the correct bolting is reinstalled during assembly.



# 

Before doing any maintenance on the pump, be certain all pressure is completely vented from the pump, suction, discharge,

piping, and all other openings and connections. Be certain the air supply is locked out or made non-operational, so that it cannot be started while work is being done on the pump. Be certain that approved eye protection and protective clothing are worn all times in the vicinity of the pump. Failure to follow these recommendations may result in serious injury or death.



#### MATERIAL CODES

The Last 3 Digits of Part Number 000 Assembly, sub-assembly; and some purchased items 010 ...... Cast Iron 371 ... Powered Metal 374 Ductile Iron 375 Ferritic Malleable Iron 378 025 Music Wire 080 ...... Carbon Steel, AISI B-1112 408 100 ..... Allov 20 425 110 ...... Alloy Type 316 Stainless Steel 426 111 ...... Alloy Type 316 Stainless Steel (Electro Polished) Alloy "C" (Hastelloy equivalent) 465 112 ..... . Alloy Type 316 Stainless Steel (Hand Polished) 500 . 303 Stainless Steel 501 302/304 Stainless Steel 502 440-C Stainless Steel (Martensitic) 117 .. 503 416 Stainless Steel (Wrought Martensitic) 505 ........ 410 Stainless Steel (Wrought Martensitic) 506 148 ...... Hardcoat Anodized Aluminum 520 149 2024-T4 Aluminum 150 ...... 6061-T6 Aluminum 151 ..... 6063-T6 Aluminum 2024-T4 Aluminum (2023-T351) 544 Almag 35 Aluminum 550 154 ..... 155 ..... . 356-T6 Aluminum 551 356-T6 Aluminum 156 552 Die Cast Aluminum Alloy #380 553 157 ..... Aluminum Allov SR-319 555 158 . Anodized Aluminum 556 159 Brass, Yellow, Screw Machine Stock 570 . Cast Bronze, 85-5-5-5 580 590 Bronze, SAE 660 170 Bronze, Bearing Type, Oil Impregnated 591 175 ..... Die Cast Zinc 592 180 ..... Copper Alloy 600 Carbon Steel, Gray Epoxy Coated 601 306 ..... Carbon Steel, Black PTFE Coated 602 307 .. ... Aluminum, Gray Epoxy Coated 603 Stainless Steel, Black PTFE Coated 604 308 Aluminum, Black PTFE Coated 607 310 .... Kynar Coated 606 Zinc Plated Steel 610 331 ..... Chrome Plated Steel 611 332 ...... Aluminum, Electroless Nickel Plated 632 Carbon Steel, Electroless Nickel Plated 633 335 Galvanized Steel 634 Zinc Plated Yellow Brass 336 ..... 637 337 Silver Plated Steel 638 340 Nickel Plated 639 342 ..... . Filled Nylon 643 Geolast: Color: Black 644

354 ...... Injection Molded #203-40 Santoprene - Duro 40D +/-5: Color: RED

- 355 ... Thermal Plastic
- 356 ..... Hytrel
- 357 ...... Injection Molded Polyurethane
- 358 Rupplon (Urethane Rubber). Color coded:
- PURPLE (Some Applications) (Compression Mold) 359 ... . Urethane Rubber
- 360 ...... Buna-N Rubber. Color coded: RED
- 361 ..... Buna-N
- Viton (Flurorel). Color coded: YELLOW 363
- 364 .. E.P.D.M. Rubber, Color coded; BLUE
- 365 ...... Neoprene Rubber, Color coded: GREEN
- 366 ...... Food Grade Nitrile

#### 368 ...... Food Grade EPDM Butyl Rubber, Color coded: BROWN 370 Philthane (Tuftane) . Carboxylated Nytrile .. Fluorinated Nitrile .. High Density Polypropylene 405 . Cellulose Fibre . Cork and Neoprene Compressed Fibre . Blue Gard Vegetable Fibre 440 .... Fibre . Delrin 500 .. Delrin 570 Conductive Acetal, ESD-800 Conductive Acetal, Glass-Filled Acrylic Resin Plastic . Delrin 150 . Injection Molded PVDF Natural color 540 . Nylon 541 .... .. Nvlon 542 . Nylon Nylon Injection Molded . Polyethylene . Glass Filled Polypropylene . Unfilled Polypropylene . Unfilled Polypropylene . Polyvinyl Chloride Black Vinyl . Rulon II Rvton Valox . Nylatron G-S . Nylatron NSB . Virgin PTFE . PTFE (Bronze and moly filled) Filled PTFE . Blue Gylon . Virgin PTFE .. Envelon . Injected molded PFA Encapsulated Silicon .. Encapsulated Viton Neoprene/Hytrel . Viton/Teflon . EPDM/Teflon . PTFE. Viton . PTFE, Hytrel . Buna-N . Santoprene®/EPDM .. Santoprene® Delrin, Viton and Hytrel are registered tradenames of E.I. DuPont.

Gylon is a registered tradename of Garlock, Inc. Nylatron is a registered tradename of Polymer Corp. Santoprene is a registered tradename of Monsanto Corp. Rulon II is a registered tradename of Dixion Industries Corp. Hastelloy-C is a registered tradename of Cabot Corp. Ryton is a registered tradename of Phillips Chemical Co. Valox is a registered tradename of General Electric Co. Warren Rupp, Rupplon, SandPIPER, SandPIPER II, PortaPump, Tranquilizer and SludgeMaster are registered tradenames of Warren Rupp, Inc.

#### TROUBLESHOOTING Possible Symptoms:

- Pump will not cycle.
- Pump cycles, but produces no flow.
- Pump cycles, but flow rate is unsatisfactory.
- Pump cycle seems unbalanced.
- Pump cycle seems to produce excessive vibration.

# <u>What to Check:</u> Excessive suction lift in system.

**Corrective Action:** For lifts exceeding 20 feet (6 meters), filling the pumping chambers with liquid will prime the pump in most cases.

What to Check: Excessive flooded suction in system.

**<u>Corrective Action:</u>** For flooded conditions exceeding 10 feet (3 meters) of liquid, install a back pressure device.

<u>What to Check:</u> System head exceeds air supply pressure.

<u>Corrective Action</u>: Increase the inlet air pressure to the pump. Most diaphragm pumps are designed for 1:1 pressure ratio at zero flow.

<u>What to Check:</u> Air supply pressure or volume exceeds system head.

<u>Corrective Action</u>: Decrease inlet air pressure and volume to the pump as calculated on the published PERFORMANCE CURVE. Pump is cavitating the fluid by fast cycling.

<u>What to Check:</u> Undersized suction line.

**Corrective Action:** Meet or exceed pump connection recommendations shown on the DIMENSIONAL DRAWING.

What to Check: Restricted or undersized air line.

**Corrective Action:** Install a larger air line and connection. Refer to air inlet recommendations shown in your pump's SERVICE MANUAL.

<u>What to Check:</u> Check ESADS, the Externally Serviceable Air Distribution System of the pump.

**Corrective Action:** Disassemble and inspect the main air distribution valve, pilot valve and pilot valve actuators. Refer to the parts drawing and air valve section of the SERVICE MANUAL. Check for clogged discharge or closed valve before reassembly.

<u>What to Check:</u> Rigid pipe connections to pump.

**Corrective Action:** Install flexible connectors and a surge suppressor.

What to Check: Blocked air exhaust muffler.

**Corrective Action:** Remove muffler screen, clean or de-ice and reinstall. Refer to the Air Exhaust section of your pump SERVICE MANUAL.

<u>What to Check:</u> Pumped fluid in air exhaust muffler.

**Corrective Action:** Disassemble pump chambers. Inspect for diaphragm rupture or loose diaphragm plate assembly. Refer to the Diaphragm Replacement section of your pump SERVICE MANUAL.

<u>What to Check:</u> Suction side air leakage or air in product.

<u>Corrective Action:</u> Visually inspect all suction side gaskets and pipe connections.

What to Check: Obstructed check valve.

<u>Corrective Action</u>: Disassemble the wet end of the pump and manually dislodge obstruction in the check valve pocket. Refer to the Check Valve section of the pump SERVICE MANUAL for disassembly instructions.

<u>What to Check:</u> Worn or misaligned check valve or check valve seat.

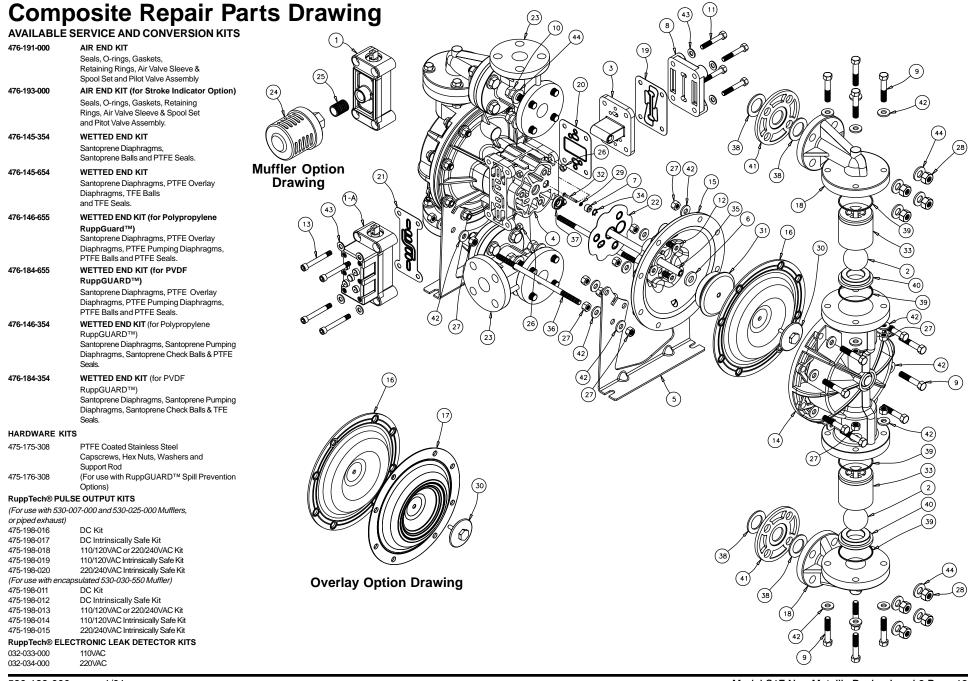
<u>Corrective Action:</u> Inspect check valves and seats for wear and proper seating. Replace if necessary. Refer to Check Valve section of the pump SERVICE MANUAL for disassembly instructions.

<u>What to Check:</u> Blocked suction line. <u>Corrective Action:</u> Remove or flush obstruction. Check and clear all suction screens and strainers.

What to Check: Blocked discharge line. Corrective Action: Check for obstruction or closed discharge line valves.

What to Check: Blocked pumping chamber.

**Corrective Action:** Disassemble and inspect the wetted chambers of the pump. Remove or flush any obstructions. Refer to the pump SERVICE MANUAL

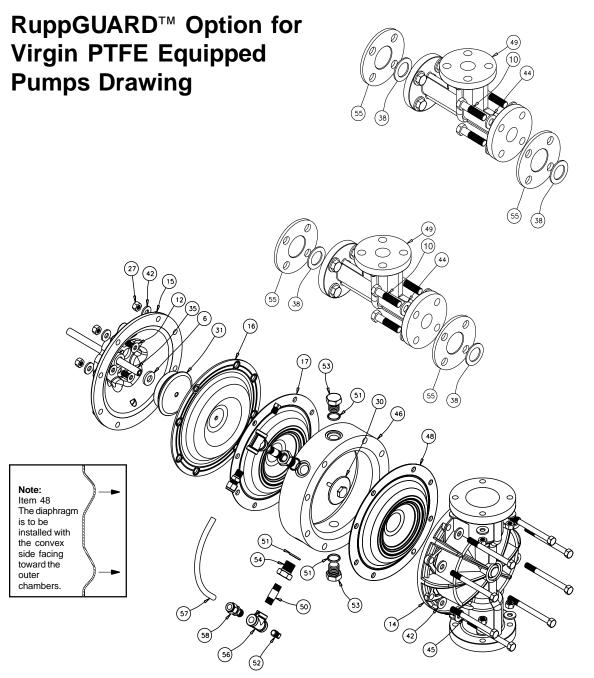

for disassembly instructions.

What to Check: Entrained air or vapor lock in one or both pumping chambers. Corrective Action: Purge chambers through tapped chamber vent plugs. PURGING THE CHAMBERS OF AIR CAN BE DANGEROUS! Contact the Warren Rupp Technical Services Department before performing this procedure. A model with top-ported discharge will reduce or eliminate problems with entrained air.

If your pump continues to perform below your expectations, contact your local Warren Rupp Distributor or factory Technical Services Group for a service evaluation.

#### WARRANTY

Refer to the enclosed Warren Rupp Warranty Certificate.




520-199-000 1/01

Model S1F Non-Metallic Design Level 2 Page 12

# **Composite Repair Parts List**

| ITEM | -<br>PART NUMBER | DESCRIPTION                                    | QTY    | ITEM   | PART NUMBER  | DESCRIPTION                     | QTY              |
|------|------------------|------------------------------------------------|--------|--------|--------------|---------------------------------|------------------|
| 1    | 031-155-000      | Air Valve Assembly                             | 1      | 21     | 360-096-360  | Gasket, Air Vale                | 1                |
| -    | 031-155-002      | Air Valve Assembly w/ PTFE coated Hardware     | ə 1    | 22     | 360-097-360  | Gasket, Inner Chamber           | 2                |
|      | 031-156-000      | Air Valve Assembly (No Encapsulated Muffler)   |        | 23     | 518-136-520  | Manifold                        | 2                |
|      | 031-156-002      | Air Valve Assembly (No Muffler/ PTFE Hardwa    | are) 1 | -      | 518-136-520E | Manifold, 25mm DIN              | 2                |
|      | 031-157-000      | Air Valve Assembly (With Stroke Indicator Opti |        |        | 518-136-542  | Manifold                        | 2                |
|      | 031-158-000      | Air Valve Assembly (No Muffler w/ Stroke Indic |        |        | 518-136-542E | Manifold, 25mm DIN              | 2                |
| 2    | 050-042-354      | Ball, Check                                    | 4      |        | 518-136-552  | Manifold                        | 2                |
| -    | 050-042-600      | Ball, Check                                    | 4      |        | 518-136-552E | Manifold, 25mm DIN              | 2                |
| 3    | 095-090-000      | Pilot Valve Assembly                           | 1      | 24     | 530-007-000  | Muffler (Mesh) (not shown)      | 1                |
| 4    | 114-022-157      | Intermediate Assembly                          | 1      |        | 530-025-000  | Muffler (Sound Dampening)       | 1                |
| -    | 114-022-307      | Intermediate Assembly                          | 1      | 25     | 538-011-555  | Nipple, Pipe                    | 1                |
|      | 114-022-309      | Intermediate Assembly                          | 1      | 26     | 545-004-115  | Nut, Hex 5/16-18                | 8                |
|      | 114-022-332      | Intermediate Assembly                          | 1      |        | 545-004-308  | Nut, Hex 5/16-18                | 8                |
| 5    | 115-139-080      | Bracket, Mounting                              | 2      | 27     | 545-005-115  | Nut, Hex 3/8-16                 | 40               |
| -    | 115-139-305      | Bracket, Mounting                              | 2      |        | 545-005-308  | Nut, Hex 3/8-16                 | 40               |
|      | 115-139-306      | Bracket, Mounting                              | 2<br>2 | 28     | 545-008-110  | Nut, Hex 1/2-13                 | 16               |
|      | 115-139-333      | Bracket, Mounting                              | 2      |        | 545-008-308  | Nut, Hex 1/2-13                 | 16               |
| 6    | 132-032-360      | Bumper, Diaphragm                              | 2<br>2 | 29     | 560-001-360  | O-ring                          | 2                |
| 7    | 135-034-506      | Bushing, Plunger                               | 2      | 30     | 612-170-520  | Assembly, Outer Diaphragm Plate | 2                |
| 8    | 165-107-157      | Cap, Air Inlet                                 | 1      |        | 612-170-542  | Assembly, Outer Diaphragm Plate | 2<br>2<br>2<br>2 |
|      | 165-107-307      | Cap, Air Inlet                                 | 1      |        | 612-170-552  | Assembly, Outer Diaphragm Plate | 2                |
|      | 165-107-309      | Cap, Air Inlet                                 | 1      | 31     | 612-171-157  | Plate, Inner Diaphragm          | 2                |
|      | 165-107-332      | Cap, Air Inlet                                 | 1      | 32     | 620-018-115  | Plunger, Actuator               | 2                |
| 9    | 170-020-115      | Capscrew, Hex HD 3/8-16 x 2.00                 | 32     | 33     | 670-048-520  | Retainer, Ball                  | 4                |
|      | 170-020-308      | Capscrew, Hex HD 3/8-16 x 2.00                 | 32     |        | 670-048-542  | Retainer, Ball                  | 4                |
| 10   | 170-066-115      | Capscrew, Hex HD 1/2-13 x 2.25                 | 16     |        | 670-048-552  | Retainer, Ball                  | 4                |
|      | 170-066-308      | Capscrew, Hex HD 1/2-13 x 2.25                 | 16     | 34     | 675-042-115  | Ring, Retainer                  | 2                |
| 11   | 170-085-115      | Capscrew, Hex HD 5/16-18 x 2.00                | 4      | 35     | 685-054-120  | Rod, Diaphragm                  | 1                |
|      | 170-085-308      | Capscrew, Hex HD 5/16-18 x 2.00                | 4      | 36     | 685-055-115  | Rod, Support                    | 2<br>2<br>2<br>8 |
| 12   | 171-015-115      | Capscrew, Soc HD 3/8-16 x .88                  | 6      |        | 685-055-308  | Rod, Support                    | 2                |
| 13   | 171-057-115      | Capscrew, Soc HD 5/16-18 x 2.25                | 4      | 37     | 720-012-360  | Seal, Diaphragm Rod             | 2                |
|      | 171-057-308      | Capscrew, Soc HD 5/16-18 x 2.25                | 4      | 38     | 720-044-600  | Seal, Manifold Spacer           |                  |
| 14   | 196-157-520      | Chamber, Outer                                 | 2      | 39     | 720-047-600  | Seal, Check Valve               | 8                |
|      | 196-157-542      | Chamber, Outer                                 | 2      | 40     | 722-079-520  | Seat, Check Valve               | 4                |
|      | 196-157-552      | Chamber, Outer                                 | 2      |        | 722-079-542  | Seat, Check Valve               | 4                |
| 15   | 196-160-157      | Chamber, Inner                                 | 2<br>2 |        | 722-079-552  | Seat, Check Valve               | 4                |
|      | 196-160-307      | Chamber, Inner                                 | 2      | 41     | 770-062-520  | Spacer, Manifold                | 4                |
|      | 196-160-309      | Chamber, Inner                                 | 2      |        | 770-062-542  | Spacer, Manifold                | 4                |
|      | 196-160-332      | Chamber, Inner                                 | 2      |        | 770-062-552  | Spacer, Manifold                | _4               |
| 16   | 286-091-354      | Diaphragm                                      | 2      | 42     | 901-009-115  | Washer, Flat 5/16"              | 72               |
| 17   | 286-093-600      | Diaphragm, Overlay                             | 2      |        | 901-009-308  | Washer, Flat 5/16"              | 72               |
| 18   | 312-104-520      | Elbow                                          | 4      | 43     | 901-038-115  | Washer, Flat 5/16"              | 8                |
|      | 312-104-542      | Elbow                                          | 4      |        | 901-038-308  | Washer, Flat 5/16"              | 8                |
|      | 312-104-552      | Elbow                                          | 4      | 44     | 901-046-115  | Washer, Flat 1/2"               | 32               |
| 19   | 360-094-360      | Gasket, Air Inlet                              | 1      |        | 901-046-308  | Washer, Flat 1/2"               | 32               |
| 20   | 360-095-360      | Gasket, Pilot Valve                            | 1      | NOT SH |              |                                 |                  |
|      |                  |                                                |        |        | 535-069-000  | Nameplate                       |                  |



# S1F Spill Prevention Repair Parts List for Virgin PTFE Equipped Pumps

| i uni | i unpo       |                                         |                  |  |  |  |
|-------|--------------|-----------------------------------------|------------------|--|--|--|
|       | Part Number  |                                         | Qty              |  |  |  |
| 45    | 170-114-115  | Capscrew, Hex Hd 3/8-16 x 4.25          | 16               |  |  |  |
|       |              | (replace 170-020-115, qty 16 of 32)     |                  |  |  |  |
|       | 170-114-308  | Capscrew, Hex Hd 3/8-16 x 4.25          | 16               |  |  |  |
|       |              | (replace 170-020-115, qty 16 of 32)     |                  |  |  |  |
| 46    | 196-159-552  | Chamber, Spill Prevention               | 2                |  |  |  |
|       | 196-159-600  | Chamber, Spill Prevention               | 2<br>2<br>2<br>2 |  |  |  |
| 48    | 286-094-600  | Diaphragm, Pumping                      | 2                |  |  |  |
| 49    | 518-137-520  | Manifold, Spill Prevention              | 2                |  |  |  |
|       |              | (replace 518-136-520)                   |                  |  |  |  |
|       | 518-137-520E | Manifold, 25mm DIN                      | 2<br>2           |  |  |  |
|       | 518-137-542  | Manifold, Spill Prevention              | 2                |  |  |  |
|       |              | (replace 518-136-542)                   |                  |  |  |  |
|       | 518-137-542E | Manifold, 25mm DIN                      | 2<br>2           |  |  |  |
|       | 518-137-552  | Manifold, Spill Prevention              | 2                |  |  |  |
|       |              | (replace 518-136-552)                   |                  |  |  |  |
|       | 518-137-552E | Manifold, 25mm DIN                      | 2                |  |  |  |
| 50    | 538-022-110  | Nipple, Pipe                            | 4                |  |  |  |
|       | 538-022-308  | Nipple, Pipe                            | 4                |  |  |  |
| 51    | 560-078-611  | O-Ring                                  | 8                |  |  |  |
| 52    | 618-003-110  | Plug, Pipe                              | 4                |  |  |  |
|       | 618-003-308  | Plug, Pipe                              | 4                |  |  |  |
| 53    | 618-025-110  | Plug, Boss                              | 4                |  |  |  |
|       | 618-025-308  | Plug, Boss                              | 4                |  |  |  |
| 54    | 618-031-110  | Plug, Boss                              | 4                |  |  |  |
|       | 618-031-308  | Plug, Boss                              | 4                |  |  |  |
| 56    | 835-005-110  | Tee, Pipe                               | 4                |  |  |  |
|       | 835-055-308  | Tee, Pipe                               | 4<br>2           |  |  |  |
| 57    | 860-056-606  | Tube, Sight                             | 2                |  |  |  |
| 58    | 866-060-110  | Connector, Tube                         | 4                |  |  |  |
| 38    | 720-056-600  | Seal, Manifold (Replaces 720-044-600)   | 4                |  |  |  |
|       | 720-057-600  | Seal, Manifold (PVDF only)              | 4                |  |  |  |
|       |              | (Replaces 720-044-600)                  |                  |  |  |  |
| 55    | 770-064-520  | Spacer, Manifold (Replaces 770-062-520) | ) 4              |  |  |  |
|       | 770-064-552  | Spacer, Manifold (Replaces 770-062-552) | ) 4              |  |  |  |

\*Note: The diaphragm is to be installed with the convex side facing toward the outer chambers. See drawing.

#### RuppGUARD<sup>™</sup> FOR VIRGIN PTFE EQUIPPED PUMPS CONCEPT

The spill prevention option prevents the air end components from being contaminated or damaged when a pumping diaphragm ruptures while pumping caustic or toxic materials. It also helps to protect the environment. With the installation of optional leak detectors (either mechanical or electronic) the diaphragm rupture can be detected. The pump can then be shut down and repaired before any caustic or toxic materials can enter the air end and be exhausted into the surrounding environment.

#### RuppGUARD<sup>™</sup> OPTION DIAPHRAGM SERVICING

To service the diaphragms first shut off the suction, then shut off the discharge lines to the pump. Next shut off the compressed air supply, bleed the pressure from the pump, and disconnect the air supply line from the pump. Drain any remaining pumped liquid from the pump. Remove the pump before servicing.

Next, drain the fluid from the spill prevention chambers. This can be done by removing the bottom plug (item 53) from each spill prevention chamber.

After the fluid from the spill prevention chambers has been drained, the wet end components can now be removed. See diaphragm servicing section for detailed instructions. The spill prevention option has two additional virgin PTFE pumping diaphragms (item 48). These diaphragms are installed with the natural **convex** curve toward the outer chamber (items 14 from the pump assembly drawing). The molded directional arrows on the diaphragms must point vertically.

#### FILLING RuppGUARD™ CHAMBERS WITH LIQUID

THE CHAMBERS ARE FILLED WITH WATER AT THE FACTORY.

If you prefer to substitute another liquid, to prevent system contamination consult the factory first to determine compatibility of the substitute with pump construction.

Follow the steps listed here to replace the liquid in the pump after disassembly or liquid loss:

1. Drain the fluid in the spill prevention chambers by removing the bottom two boss plugs (items 53). Replace the bottom two boss plugs after the fluid is drained.

2. Remove the eight capscrews (item 9) fastening the discharge manifold and elbows to the outer chambers (items 14). The discharge manifolds and elbows can now be removed.

3. Remove the top two boss plugs (items 53). The spill prevention chambers are filled through the exposed ports.

4. Apply air pressure to the air distribution valve. Install safety clip (item 1-F) into the smaller unthreaded hole in one end cap (item 1-D). This locks the valve spool to one side, keeping the pump from shifting.

5. Face the side of the pump with the installed safety clip. If the safety clip is installed in the top end cap, fill the left spill containment chamber. If the safety clip is installed on the bottom end cap, fill the right spill prevention chamber. The volume of fluid is 1198 ml (40.49 fl. oz.). It is important that the <u>exact amount</u> of fluid is used. Too little or too much fluid causes premature diaphragm failure and erratic pumping.

6. Loosely reinstall one boss plug (item 53) to the filled spill prevention chamber.

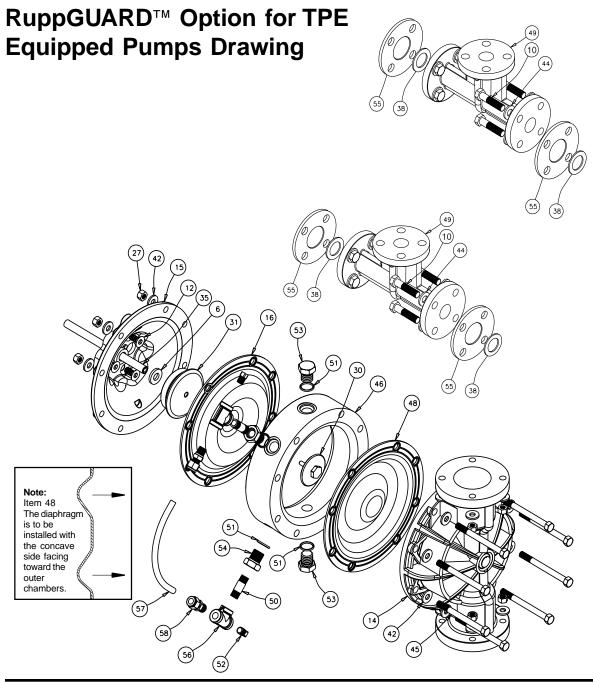
7. Shut off air supply. Remove safety clip. Adjust the air line regulator so that air pressure slowly fills the pump. The diaphragm expands, forcing the fluid in the chamber to be slowly displaced. When the pump shifts to the opposite side, quickly install the safety clip.

8. Loosen the top boss plug on the filled chambers. This allows fluid in the chamber to purge trapped air from the chamber. This can be seen by watching the column of fluid in the sight tube. When fluid appears at the top of the port, quickly tighten the boss plug. Fluid loss of 1 to 2ml is acceptable.

9. Tilt the pump so the uppermost pipe tee (item 56) is in the vertical position. Loosen the pipe plug (item 52). This will allow trapped air to purge through the pipe tee. When fluid appears at the tee opening, reinstall the pipe plug.

**NOTE:** If all air is not purged using this procedure, remove the check valve components from the top port of the outer chamber (item 14). Apply manual pressure to the pumping diaphragm by inserting a blunt instrument into the top port of the outer chamber and applying pressure to the diaphragm. Loosen the pipe plug (item 52) allowing the fluid to

purge any remaining trapped air. Reinstall the plug.


10. Repeat steps 5 through 9 to fill opposite spill prevention chamber.

11. Reinstall the check valve components, discharge manifold and elbows to the pump. The pump is now ready for operation.



### A IMPORTANT

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain



| S1F Spill Prevention for TPE Equipped Pumps Repair Parts List |              |                                         |                  |  |  |
|---------------------------------------------------------------|--------------|-----------------------------------------|------------------|--|--|
| Item                                                          | Part Number  | Description                             | Qty              |  |  |
| 45                                                            | 170-114-115  | Capscrew, Hex Hd 3/8-16 x 4.25          | 16               |  |  |
|                                                               |              | (replace 170-020-115, qty 16 of 32)     |                  |  |  |
|                                                               | 170-114-308  | Capscrew, Hex Hd 3/8-16 x 4.25          | 16               |  |  |
|                                                               |              | (replace 170-020-115, qty 16 of 32)     |                  |  |  |
| 46                                                            | 196-159-552  | Chamber, Spill Prevention               | 2                |  |  |
|                                                               | 196-159-600  | Chamber, Spill Prevention               | 2<br>2<br>2      |  |  |
| 49                                                            | 518-137-520  | Manifold, Spill Prevention              | 2                |  |  |
|                                                               |              | (replace 518-136-520)                   |                  |  |  |
|                                                               | 518-137-520E | Manifold, 25mm DIN                      | 2                |  |  |
|                                                               | 518-137-552  | Manifold, Spill Prevention              | 2                |  |  |
|                                                               |              | (replace 518-136-552)                   |                  |  |  |
|                                                               | 518-137-552E | Manifold, 25mm DIN                      | 2                |  |  |
| 50                                                            | 538-022-110  | Nipple, Pipe                            | 4                |  |  |
|                                                               | 538-022-308  | Nipple, Pipe                            | 4                |  |  |
| 51                                                            | 560-078-611  | O-Ring                                  | 8                |  |  |
| 52                                                            | 618-003-110  | Plug, Pipe                              | 4                |  |  |
|                                                               | 618-003-308  | Plug, Pipe                              | 4                |  |  |
| 53                                                            | 618-025-110  | Plug, Boss                              | 4                |  |  |
|                                                               | 618-025-308  | Plug, Boss                              | 4                |  |  |
| 54                                                            | 618-031-110  | Plug, Boss                              | 4                |  |  |
|                                                               | 618-031-308  | Plug, Boss                              | 4                |  |  |
| 55                                                            | 770-066-520  | Spacer, Manifold (used w/ overlay)      | 4                |  |  |
|                                                               | 770-066-542  | Spacer, Manifold (used w/ overlay)      | 4                |  |  |
|                                                               | 770-066-552  | Spacer, Manifold (used w/ overlay)      | 4                |  |  |
| 56                                                            | 835-005-110  | Tee, Pipe                               | 4                |  |  |
|                                                               | 835-055-308  | Tee, Pipe                               | 4                |  |  |
| 57                                                            | 860-056-606  | Tube, Sight                             | 2<br>4<br>2<br>2 |  |  |
| 58                                                            | 866-060-110  | Connector, Tube                         | 4                |  |  |
| 17                                                            | 286-093-600  | Diaphragm, Overlay is not used          | 2                |  |  |
| 48                                                            | 286-092-354* | Diaphragm, Pumping                      | 2                |  |  |
| 0.0                                                           | 700 050 000  | (Replaces 286-094-600)                  |                  |  |  |
| 38                                                            | 720-056-600  | Seal, Manifold Replaces 720-044-600     |                  |  |  |
|                                                               | 720-057-600  | Seal, Manifold (PVDF only)              | 4                |  |  |
| ~ ~                                                           | 770 004 500  | (Replaces 720-044-600)                  | 4                |  |  |
| 55                                                            | 770-064-520  | Spacer, Manifold (Replaces 770-062-520) | 4<br>4           |  |  |
|                                                               | 770-064-552  | Spacer, Manifold (Replaces 770-062-552) | 4                |  |  |

\*Note: The diaphragm is to be installed with the concave side facing toward the outer chambers. See drawing.

#### RuppGUARD<sup>™</sup> FOR TPE EQUIPPED PUMPS CONCEPT

The spill prevention option prevents the air end components from being contaminated or damaged when a pumping diaphragm ruptures while pumping caustic or toxic materials. It also helps to protect the environment. With the installation of optional leak detectors (either mechanical or electronic) the diaphragm rupture can be detected. The pump can then be shut down and repaired before any caustic or toxic materials can enter the air end and be exhausted into the surrounding environment.

#### RuppGUARD<sup>™</sup> OPTION DIAPHRAGM SERVICING

To service the diaphragms first shut off the suction, then shut off the discharge lines to the pump. Next shut off the compressed air supply, bleed the pressure from the pump, and disconnect the air supply line from the pump. Drain any remaining pumped liquid from the pump. Remove the pump before servicing.

Next, drain the fluid from the spill prevention chambers. This can be done by removing the bottom plug (item 53) from each spill prevention chamber.

After the fluid from the spill prevention chambers has been drained, the wet end components can now be removed. See diaphragm servicing section for detailed instructions. The spill prevention option has two additional TPE pumping diaphragms (item 48). These diaphragms are installed with the natural **concave** curve toward the outer chamber (items 14 from the pump assembly drawing). The molded directional arrows on the diaphragms must point vertically.

#### FILLING RuppGUARD™ CHAMBERS WITH LIQUID

THE CHAMBERS ARE FILLED WITH WATER AT THE FACTORY.

If you prefer to substitute another liquid, to prevent system contamination consult the factory first to determine compatibility of the substitute with pump construction.

Follow the steps listed here to replace the liquid in the pump after disassembly or liquid loss:

1. Drain the fluid in the spill prevention chambers by removing the bottom two boss plugs (items 53). Replace the bottom two boss plugs after the fluid is drained.

2. Remove the eight capscrews (item 9) fastening the discharge manifold and elbows to the outer chambers (items 14). The discharge manifolds and elbows can now be removed.

3. Remove the top two boss plugs (items 53). The spill prevention chambers are filled through the exposed ports.

4. Apply air pressure to the air distribution valve. Install safety clip (item 1-F) into the smaller unthreaded hole in one end cap (item 1-D). This locks the valve spool to one side, keeping the pump from shifting.

5. Face the side of the pump with the installed safety clip. If the safety clip is installed in the top end cap, fill the left spill prevention chamber. If the safety clip is installed on the bottom end cap, fill the right spill prevention chamber.

6. Loosely reinstall one boss plug (item 53) to the filled spill prevention chamber.

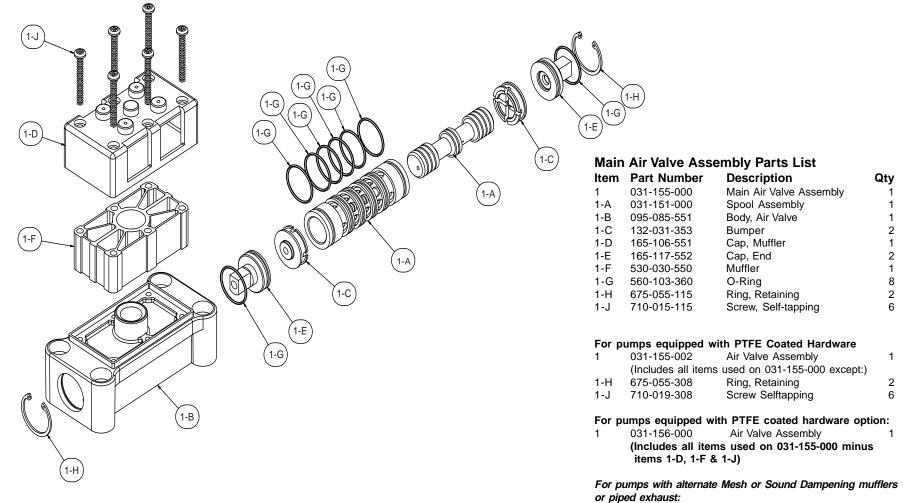
7. Shut off air supply. Remove safety clip. Adjust the air line regulator so that air pressure slowly fills the pump. The diaphragm expands, forcing the fluid in the chamber to be slowly displaced. When the pump shifts to the opposite side, quickly install the safety clip.

8. Loosen the top boss plug on the filled chambers. This allows fluid in the chamber to purge trapped air from the chamber. This can be seen by watching the column of fluid in the sight tube. When fluid appears at the top of the port, quickly tighten the boss plug. Fluid loss of 1 to 2ml is acceptable.

9. Tilt the pump so the uppermost pipe tee (item 56) is in the vertical position. Loosen the pipe plug (item 52). This will allow trapped air to purge through the pipe tee. When fluid appears at the tee opening, reinstall the pipe plug.

**NOTE:** If all air is not purged using this procedure, remove the check valve components from the top port of the outer chamber (item 14). Apply manual pressure to the pumping diaphragm by inserting a blunt instrument into the top port of the outer chamber and applying pressure to the diaphragm. Loosen the pipe plug (item 52) allowing the fluid to purge any remaining trapped air. Reinstall the plug.

10. Repeat steps 5 through 9 to fill opposite spill prevention chamber.


11. Reinstall the check valve components, discharge manifold and elbows to the pump. The pump is now ready for operation.



### 

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain

# Air Distribution Valve Assembly Drawing S1F Design Level 2



| 1   | 031-156-002         | Air Valve Assembly             | 1 |
|-----|---------------------|--------------------------------|---|
|     | (Includes all items | s used on 031-156-000 except:) |   |
| 1-H | 675-055-308         | Ring, Retaining                | 2 |

# AIR DISTRIBUTION VALVE SERVICING

To service the air valve first shut off the compressed air, bleed the pressure from the pump, and disconnect the air supply line from the pump.

# **STEP #1:** See Composite Repair and Parts Drawing.

Using a  $5/16^{\circ}$  Allen wrench, remove the four hex socket capscrews (item 13) and four flat washers (item 43). Remove the air valve assembly (item 1) from the pump.

Remove and inspect gasket (item 21) for cracks or damage. Replace gasket if needed.

STEP #2: Disassembly of the air valve.

To access the internal air valve components first remove the two retaining rings (item 1-K) from each end of the air valve assembly using clip ring pliers.

Next remove the two end caps (item 1-E). Inspect the o-rings (item 1-G) for cuts or wear. Replace the o-rings if necessary.

Remove the spool (part of item 1-A) from the sleeve. Be careful not to stratch or damage the outer diameter of the spool. Wipe spool with a soft cloth and inspect for scratches or wear.

Inspect the inner diameter of the sleeve (part of item 1-A) for dirt, scratches, or other contaminates. Remove the sleeve if needed and replace both the sleeve and spool with a new sleeve and spool set (item 1-A).

STEP #3: Reassembly of the air valve. Install one bumper, (item 1-C) and one end cap (item 1-E) with an o-ring (item 1-G) into one end of the air valve body (item 1-B). Install one retaining ring (item 1-H) into the groove on the same end.

Remove the new sleeve an spool set (item 1-A) from the plastic bag. Carefully remove the spool from the sleeve. Install the six o-rings (item 1-G) into the six grooves on the sleeve. Apply a light coating of grease to the o-rings before installing the sleeve into the valve body (item 1-B), align the slots in the sleeve with the slots in the valve body. Insert the spool into the sleeve. Be careful not to scratch or damage the spool during installation. Push the spool in until it touches the bumper on the opposite end.

Install the remaining bumper, end cap with o-ring, and retaining ring.

Fasten the air valve assembly (item 1) and gasket (item 21) to the pump.


Connect the compressed air line to the pump. The pump is now ready for operation.



### A IMPORTANT

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain

# Air Valve Assembly Drawing with Stroke Indicator Option S1F Design Level 2



#### Pilot Valve Assembly Parts List

| tem | Part Number | Description             | Qty     |
|-----|-------------|-------------------------|---------|
| 1   | 031-157-000 | Air Valve Assembly      | 1       |
| 1-A | 031-152-000 | Sleeve and Spool Set w/ | 'Pins 1 |
| 1-B | 095-085-551 | Body, Air Valve         | 1       |
| 1-C | 132-031-552 | Bumper                  | 2       |
| 1-D | 165-106-551 | Cap, Muffler            | 1       |
| 1-E | 165-105-147 | Cap, End                | 2       |
| 1-F | 530-030-550 | Muffler                 | 1       |
| 1-G | 560-103-360 | O-Ring                  | 8       |
| 1-H | 675-055-115 | Ring, Retaining         | 2       |
| 1-J | 710-015-115 | Screw, Self-Tapping     | 6       |
| 1-K | 210-008-330 | Clip, Safety            | 1       |
| 1-M | 560-029-360 | O-Ring                  | 2       |
|     |             |                         |         |

# For Pumps with Alternate Mesh, Sound Dampening Mufflers or Piped Exhaust:

| 1 | 031-158-000       | Air Valve Assembly        | 1         |
|---|-------------------|---------------------------|-----------|
|   | (includes all ite | ms on 031-157-000 minus * | 1-D, 1-F, |
|   | &1-J)             |                           |           |

#### AIR DISTRIBUTION VALVE WITH STROKE INDICATOR OPTION SERVICING

To service the air valve first shut off the compressed air, bleed the pressure from the pump, and disconnect the air supply line from the pump.

**STEP #1:** See Composite Repair and Parts Drawing.

Using a 5/16" Allen wrench, remove the four hex socket capscrews (item 13) and four flat washers (item 43). Remove the air valve assembly (item 1) from the pump.

Remove and inspect gasket (item 21) for cracks or damage. Replace gasket if needed.

STEP #2: Disassembly of the air valve.

To access the internal air valve components first remove the two retaining rings (item 1-K) from each end of the air valve assembly using clip ring pliers.

Next remove the two end caps (item 1-E). Inspect the o-rings (item 1-G) for cuts or wear. Replace the o-rings if necessary.

Remove the spool (part of item 1-A) from the sleeve. Be careful not to scratch or damage the outer diameter of the spool. Wipe spool with a soft cloth and inspect for scratches or wear.

Inspect the inner diameter of the sleeve (part of item 1-A) for dirt, scratches, or other contaminates. Remove the sleeve if needed and replace both the sleeve and spool with a new sleeve and spool set (item 1-A).

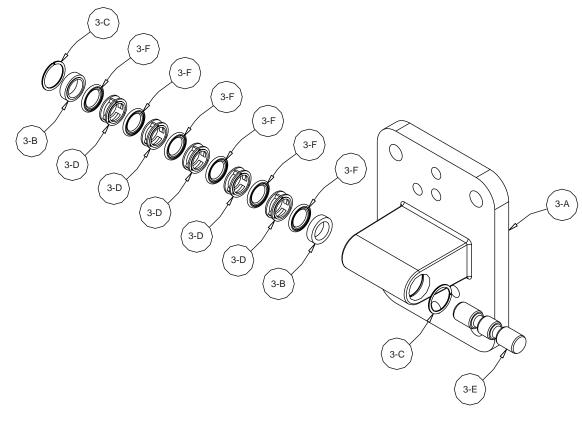
STEP #3: Reassembly of the air valve.

Install one bumper (item 1-C) and one end cap (item 1-E) with an o-ring (item 1-G) into one end of the air valve body (item 1-B). Install one retaining ring (item 1-H) into the groove on the same end. Insert the safety clip (item 1-K) through the small unthreaded hole in the end cap.

Remove the new sleeve an spool set (item 1-A) from the plastic bag. Carefully remove the spool from the sleeve. Install the six o-rings (item 1-G) into the six grooves on the sleeve. Apply a light coating of grease to the o-rings before installing the sleeve into the valve body (item 1-B), align the slots in the sleeve with the slots in the valve body. Insert the spool into the sleeve. Be careful not to scratch or damage the spool during installation. Push the spool in until the pin touches the safety clip on the opposite end.

Install the remaining bumper, end cap with o-ring, and retaining ring.

Fasten the air valve assembly (item 1) and gasket (item 21) to the pump.


Connect the compressed air line to the pump. The pump is now ready for operation.



### A IMPORTANT

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain

# **Pilot Valve Assembly Drawing**



#### Pilot Valve Assembly Parts List

| ltem | Part Number | Description            | Qty |
|------|-------------|------------------------|-----|
| 3    | 095-090-000 | Pilot Valve Assembly   |     |
| 3-A  | 095-084-551 | Body, Pilot Valve      | 1   |
| 3-B  | 135-037-506 | Bushing                | 2   |
| 3-C  | 675-057-115 | Ring, Spiral Retaining | 2   |
| 3-D  | 770-065-175 | Spacer                 | 5   |
| 3-E  | 775-041-506 | Spool, Pilot           | 1   |
| 3-F  | 917-003-374 | Wiper                  | 6   |

#### PILOT VALVE SERVICING

To service the pilot valve first shut off the compressed air supply, bleed the pressure from the pump, and disconnect the air supply line from the pump. Insert the safety clip (item 1-F from Air Distribution Valve assembly drawing) into the smaller unthreaded holes in the end cap (item 1-D from air distribution valve assembly drawing).

# **Step #1:** See PUMP ASSEMBLY DRAWING.

Using a  $\frac{9}{16}$  wrench or socket, remove the four capscrews (items 11) and four flat washers (items 43). Remove the air inlet cap (item 8) and air inlet gasket (item 19). The pilot valve assembly (item 3) can now be removed for inspection or service.

**Step #2:** Disassembly of the pilot valve.

Remove the pilot valve spool (item 3-E). Wipe clean, and inspect for dirt, scratches or wear. Replace the spool if necessary.

Remove the two spiral retaining rings (items 3-C) from each end of the pilot valve body by inserting the tip of a small flat screw driver under the notch in the retaining ring. Lift and push the ring clockwise in a circular motion.

Remove the two pilot valve bushings (items 3-B), five spacers (items 3-D), and six spool wipers (items 3-F) by pushing gently from other end of the pilot valve body. Inspect the wipers for cuts and/or wear. Replace any wipers as necessary. **Step #3:** Re-assembly of the pilot valve.

First install a spiral retaining ring to one end of the pilot valve body. Spread the spiral and insert one end into the groove in the pilot valve body. Twist the ring in a clockwise motion until the full ring is snapped into the groove. Install one bushing making sure the step side faces toward the wiper. Apply a light coating of grease to the outside diameter of each wiper. Next, gently push in the wipers and spacers until they are against the installed retaining ring in the opposite end of the pilot valve body. Install the remaining bushing making sure the step side faces the wiper. Install the remaining spiral retaining ring using the same method described.

Apply a light coating of grease to the inner diameter of each wiper. Also apply a light coating of grease to the outer diameter of the pilot valve spool and gently push the spool through each wiper.

**Step #4:** Inspect the actuator plungers.

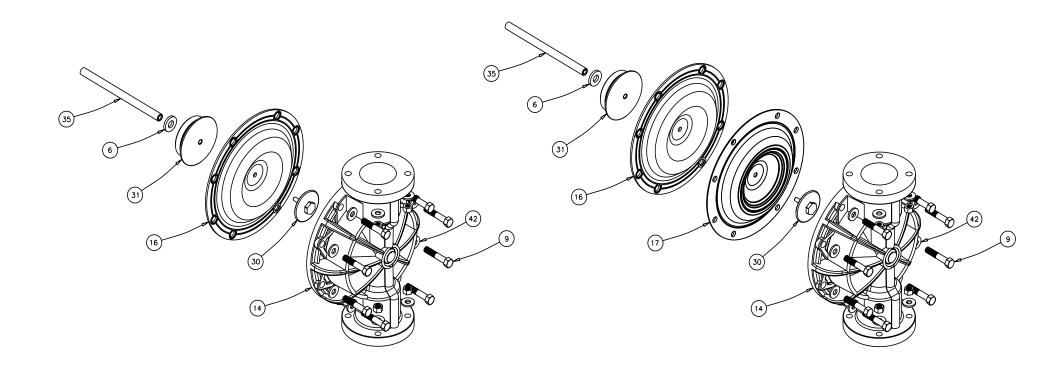
See PUMP ASSEMBLY DRAWING. The actuator plungers (items 32) can be reached through the stem cavity of the pilot valve in the intermediate assembly (item 4).

Remove the plungers (items 32) from the bushings (item 7) in each end of the cavity. Inspect the installed o-ring (items 29) for cuts and/or wear. Replace the orings if necessary. Apply a light coating of grease to each o-ring and re-install the plungers in to the bushings. Push the plungers in as far as they will go. **Step #5:** Re-install the pilot valve ssembly into the intermediate assembly.

Be careful to align the ends of the stem between the plungers when inserting the stem of the pilot valve into the cavity of the intermediate.

Re-install the gasket (item 19), air inlet cap (item 8), capscrews and washers (items 11 and 43).

Connect the air supply to the pump. Remove the safety clip (item 1-F) from the end cap (item 1-D). The pump is now ready for operation.




A IMPORTANT

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain

# Diaphragm Service Drawing, Non-Overlay

# Diaphragm Service Drawing, with Overlay



#### DIAPHRAGM SERVICING

To service the diaphragms first shut off the suction, then shut off the discharge lines to the pump. Shut off the compressed air supply, bleed the pressure from the pump, and disconnect the air supply line from the pump. Drain any remaining liquid from the pump.

**Step #1:** See the pump composite repair parts drawing, and the diaphragm servicing illustration.

Using a  $\frac{9}{16}$ " wrench or socket, remove the 16 capscrews (items 9), hex nuts and washers that fasten the elbows (items 18) to the outer chambers (items 14). Remove the elbows with the manifolds and spacers attached.

**Step #2:** Removing the outer chambers.

Using a  $\frac{9}{16}$  wrench or socket, remove the 16 capscrews (items 9), hex nuts and washers that fasten the outer chambers, diaphragms, and inner chambers (items 15) together.

**Step #3:** Removing the diaphragm assemblies.

Use a  $1^{3}/8^{"}$  (35mm) wrench or six pointed socket to remove the diaphragm assemblies (outer plate, diaphragm, and inner plate) from the diaphragm rod (item 35) by turning counterclockwise.

Insert a 1/4-20 capscrew or set screw into the smaller tapped hole in the inner diaphragm plate (item 31). Insert the protruding stud and the 1/4-20 fastener loosely into a vise. Use a  $1^{3}/_{8}$ " wrench or socket to remove the outer diaphragm

plate (item 30) by turning counterclockwise. Inspect the diaphragm (item 16) for cuts, punctures, abrasive wear or chemical attack. Replace the diaphragms if necessary.

Step #4: Installing the diaphragms.

Push the threaded stud of the outer diaphragm plate through the center hole of the diaphragm. Thread the inner plate clockwise onto the stud. Use a torque wrench to tighten the diaphragm assembly together to 20 ft. Lbs. (27.11 Newton meters). Allow a minimum of 15 minutes to elapse after torquing, then retorque the assembly to compensate for stress relaxation in the clamped assembly.

**Step #5:** Installing the diaphragm assemblies to the pump.

Make sure the bumper (item 6) is installed over the diaphragm rod.

Thread the stud of the one diaphragm assembly clockwise into the tapped hole at the end of the diaphragm rod (item 35) until the inner diaphragm plate is flush to the end of the rod. Insert rod into pump.

Align the bolt holes in the diaphragm with the bolt pattern in the inner chamber (item 15). Make sure the molded directional arrows on the diaphragm point vertically.

Fasten the outer chamber (item 14) to the pump, using the capscrews (items 9), hex nuts and flat washers.

On the opposite side of the pump, pull the diaphragm rod out as far as possible. Make sure the bumper (item 6) is installed over the diaphragm rod. Thread the stud of the remaining diaphragm assembly clockwise into the tapped hole at the end of the diaphragm rod (item 35) as far as possible and still allow for alignment of the bolt holes in the diaphragm with the bolt pattern in the inner chamber. The molded directional arrows on the diaphragm must point vertically.

Fasten the remaining outer chamber (item 14) to the pump, using the capscrews (items 9), hex nuts and flat washers.

**Step #6:** Re-install the elbow/spacer/ manifold assemblies to the pump, using the capscrews (items 9), hex nuts and flat washers.

The pump is now ready to be reinstalled, connected and returned to operation.

#### **OVERLAY DIAPHRAGM SERVICING**

The PTFE overlay diaphragm (item 17) is designed to fit snugly over the exterior of the standard TPE diaphragm (item 16).

The molded directional arrows on the overlay diaphragm must point vertically.

Follow the same procedures described for the standard diaphragm for removal and installation.



A IMPORTANT

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain

#### PUMPING HAZARDOUS LIQUIDS

When a diaphragm fails, the pumped liquid or fumes enter the air end of the pump. Fumes are exhausted into the surrounding environment. When pumping hazardous or toxic materials, the exhaust air must be piped to an appropriate area for safe disposal. See illustration #1 at right.

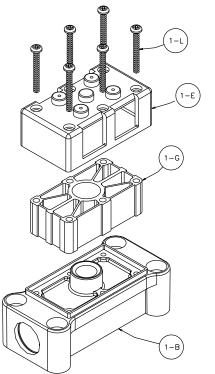
This pump can be submerged if the pump materials of construction are compatible with the liquid being pumped. The air exhaust must be piped above the liquid level. See illustration #2 at right. Piping used for the air exhaust must not be smaller than 1" (2.54 cm) diameter. Reducing the pipe size will restrict air flow and reduce pump performance. When the pumped product source is at a higher level than the pump (flooded suction condition), pipe the exhaust higher than the product source to prevent siphoning spills. See illustration #3 at right.

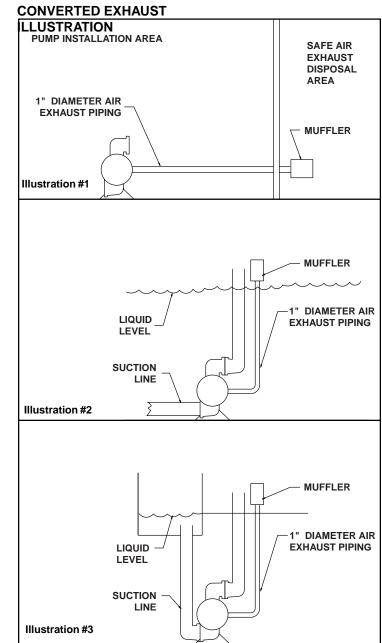
#### CONVERTING THE PUMP FOR PIPING THE EXHAUST AIR

The following steps are necessary to convert the pump to pipe the exhaust air away from the pump.

Use a #8 Torx or flat screwdriver to remove the six self-tapping screws (item 1-L).

Remove the muffler cap and muffler (items 1-E and 1-G). The  $\frac{1}{2}$ " NPT molded threads in the air distribution valve body (item 1-B).


Piping or hose may now be installed.


#### IMPORTANT INSTALLATION

**NOTE:** The manufacturer recommends installing a flexible hose or connection between the pump and any rigid plumbing. This reduces stresses on the molded plastic threads of the air exhaust port. Failure to do so may result in damage to the air distribution valve body.

Any piping or hose connected to the pump's air exhaust port must be physically supported. Failure to support these connections could also result in damage to the air distribution valve body.

### **Exhaust Conversion Drawing**





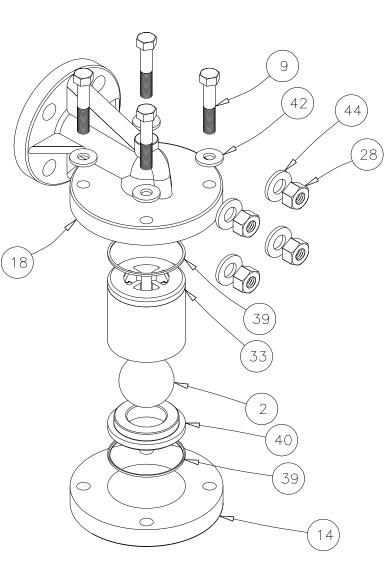
#### MODULAR CHECK VALVE SERVICING

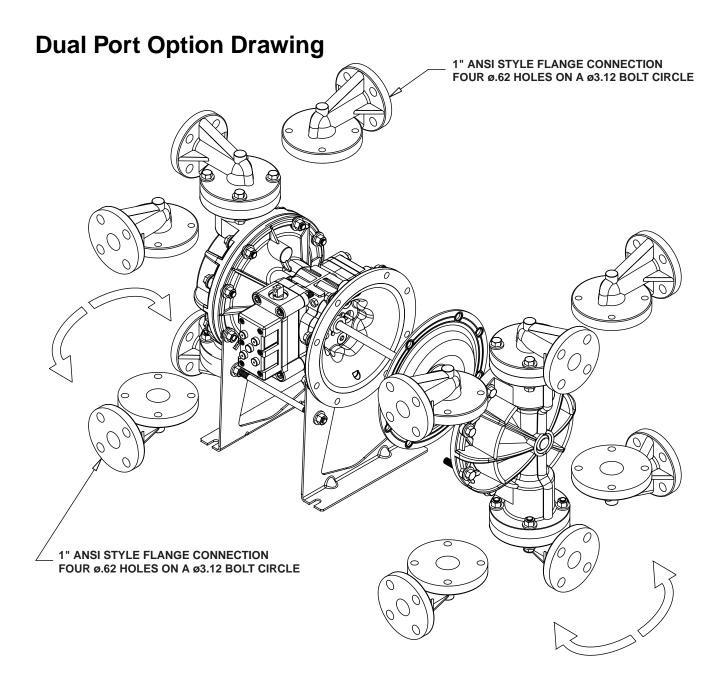
Before servicing the check valves, first shut off the suction line and then the discharge line to the pump. Next, shut off the compressed air supply, bleed air pressure from the pump, and disconnect the air supply line from the pump. Drain any remaining fluid from the pump. The pump can now be removed for service.

To access the modular check valve, remove the elbows (items 18 from pump composite repair parts drawing). Use a  $^{9}/_{16}$ " wrench or socket to remove the fasteners. Once the elbows are removed, the modular check valves can be seen in the cavities of the outer chamber (items 14).

Next remove the check valve seal (item 39). Inspect the seal for cuts or pinched areas. Replace seal as needed.

Disassemble the component parts of each modular check valve. Inspect the check valve retainer (item 33) for cuts, abrasive wear, or embedded materials. Replace as needed.


Inspect the check balls (items 2) for wear, abrasion, or cuts on the spherical surface. The check valve seats (items 40) should be inspected for cuts, abrasive wear, or embedded material on the surfaces of both the external and internal chamfers. The spherical surface of the check balls must seat flush to the surface of the inner chamfer on the check valve seats for the pump to operate to peak efficiency. Replace any worn or damaged parts as necessary. Remove the remaining check valve seal (item 39). Inspect the seal for cuts or pinched areas. Replace seal as needed.


Re-assemble the modular check valve. The seat should fit snugly into the retainer.

Place a check valve seal (item 39) into the cavity of the outer chamber (item 14). Make sure the chamfer side of the seal faces out. Insert the modular check valve into the outer chamber with the retainer facing up. Install a check valve seal (item 39). Make sure the chamfer side of the seal faces the chamfer on the check valve seat or retainer.

The pump can now reassembled, reconnected and returned to operation.

### **Modular Check Valve Drawing**





#### **DUAL PORTING OPTIONS**

Several dual porting options are possible. The pump can be converted to a dual port arrangement on both the suction and the discharge ends. The porting can be configured to a single suction and a dual discharge. The porting can be changed to a dual suction and a single discharge.

The above changes are possible because the porting flange of the elbows (items 18) are designed to mate with standard 125# ANSI style 4-bolt, 1" pipe flanges.

# Dual porting of both suction and discharge ends of the pump

Converting the pump from the standard single suction and discharge porting configuration to dual porting at each end is easy. Simply remove the manifold seals, spacers, and manifolds (items 38, 41, and 23 from pump assembly drawing) from the pump.

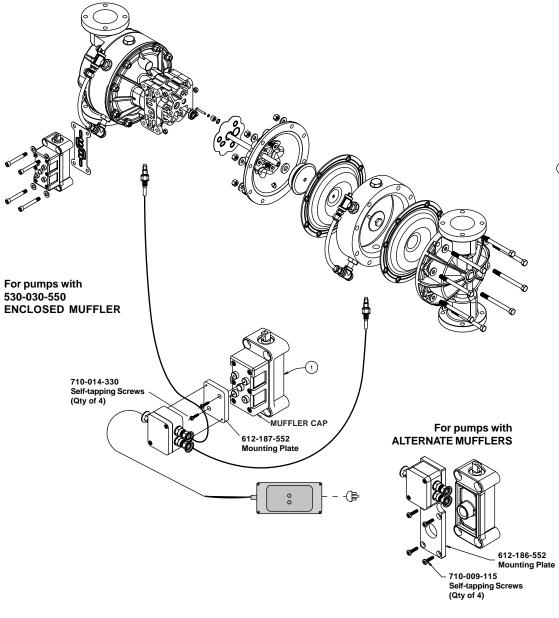
The discharge and suction elbows can be rotated at 90° increments (see arrows and optional positioning in the Dual Porting Drawing.

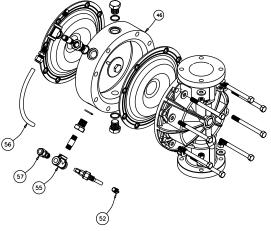
# Single porting of the suction and dual porting of the pump discharge

To convert the pump from the standard single suction and single discharge porting configuration to a dual discharge porting arrangement remove the only the discharge manifolds, spacers, and manifold seals. Position the discharge elbows in the desired direction at 90° increments. (See arrows and optional positioning in the Dual Porting Drawing.)

#### Dual porting of the suction and single porting of the pump discharge

To convert the pump from the standard single suction and single discharge porting configuration to a dual suction porting arrangement remove the only the suction (bottom) manifolds, spacers, and manifold seals.


Position the suction elbows in the desired direction at 90° increments. (See arrows and optional positioning in the Dual Porting Drawing.)




### A IMPORTANT

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain

### Leak Detection Options Drawing





#### RuppTech® LEAK DETECTION OPTION A (ELECTRONIC)

Follow instructions found elsewhere in this manual, "Filling the RuppGUARD<sup>™</sup> Spill Prevention Chambers" when installing leak detectors.

#### **Electronic Leak Detector Installation**

Kit 032-033-000 110VAC

Kit 032-034-000 220VAC

To install electronic leak detectors, remove the bottom  $\frac{1}{4}$ " NPT pipe plug on the visual sight tube (item 56). Insert leak detector into the  $\frac{1}{4}$ " pipe tee (item 55).

#### LEAK DETECTION OPTION B (MECHANICAL)

Follow instructions found elsewhere in this manual, "Filling the RuppGUARD<sup>™</sup> Spill Prevention Chambers" when installing leak detectors.

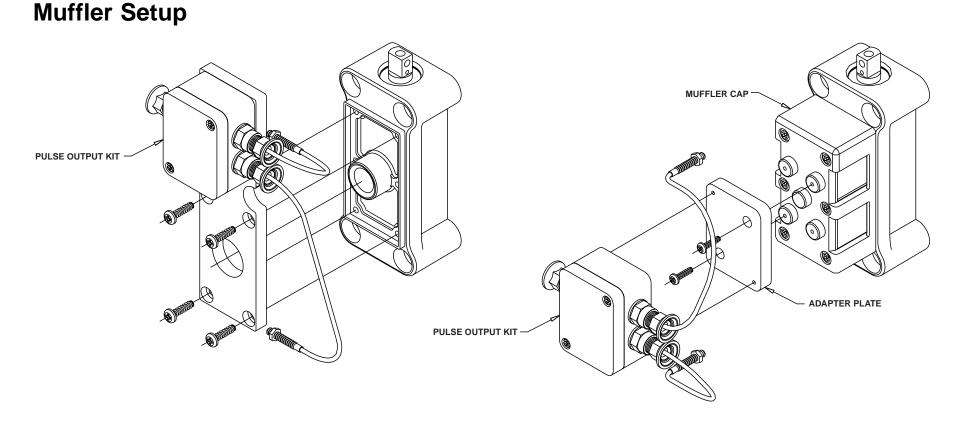
#### **Mechanical Leak Detector Installation**

Kit 031-023-110

To install mechanical leak detectors, remove the bottom ¼" NPT pipe plug on the visual sight tube (item 56). Insert leak detector into the ¼" pipe tee (item 55).

## RuppTech® Pulse Output Kit Drawing

#### PULSE OUTPUT KIT OPTION


**Exhaust Port or Auxiliary** 

This pump can be fitted with a Pulse Output Kit. This converts the mechanical strokes of the pump to an electrical signal which interfaces with the RuppTech® Stroke Counter/ Batch Controller or user control devices such as a PLC.

The Pulse Output Kits mount directly onto the Muffler Cap on the Air Distribution Valve Assembly or onto the Air Distribution Valve Assembly when the threaded exhaust port or an auxiliary muffler is being used.

See the individual kits listed on the Pump Repair Parts List for further information.

### **Integral Muffler Setup**

